High Frequency MEMS VCXO Preliminary

Features, Benefits and Applications

- Any frequency between 80.000001 and 220 MHz with 6 decimal places of accuracy
- 100% pin-to-pin drop-in replacement to quartz based VCXO
- Frequency stability as low as ±10 PPM
- Widest pull range options from ±25 PPM to ±1600 PPM
- Superior pull range linearity of <= 1%, 10 times better than quartz
- LVCMOS/LVTTL compatible output
- Three industry-standard packages: 3.2 mm x2.5 mm (4-pin), 5.0 mm x 3.2 mm (6-pin), 7.0 mm x 5.0 mm (6-pin)
- Ideal for telecom clock synchronization, instrumentation, low bandwidth analog PLL, jitter cleaner, clock recovery, audio, video, FPGA, broadband and networking

Specifications

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
Output Frequency Range	f	80.000001	_	220	MHz		
Frequency Stability	F_stab	-10	-	+10	PPM	IInclusive of Initial tolerance ^[1] at 25 °C, operating temperature	
		-25	-	+25	PPM	rated supply voltage variation and load variation (15% pF \pm 10%)	
		-50	-	+50	PPM		
Operating Temperature Range	T_use	-20	-	+70	°C	Extended Commercial	
	_	-40	-	+85	°C	Industrial	
Supply Voltage	Vdd	2.97	3.3	3.63	V	Conact SiTime for any other voltage support between 2.5V and	
		2.52	2.8	3.08	V	3.3V	
		2.25	2.5	2.75	V		
		1.71	1.8	1.89			
Pull Range ^[2,3]	PR	±25, ±50, ±100,±150,		PPM			
		±200, ±400, ±800, ±1600					
Upper Control Voltage	VC_U	1.7	-	-	V	Vdd = 1.8 V, Voltage at which maximum deviation is guaranteed.	
		2.4	-	-	V	Vdd = 2.5 V, Voltage at which maximum deviation is guaranteed.	
		2.7	-	-	V	Vdd = 2.8 V, Voltage at which maximum deviation is guaranteed.	
		3.2	-	-	V	Vdd = 3.3 V, Voltage at which maximum deviation is guaranteed.	
Lower Control Voltage	VC_L	-	-	0.1	V	Voltage at which miminum deviation is guaranteed.	
Control Voltage Input Impedence	Z_vin	100	-	-	kΩ	For the voltage control pin	
Linearity	Lin	_	0.1	1	%		
Frequency Change Polarity	-	F	Positive slope	9	-		
Control Voltage Bandwidth(-3dB)	V_BW	-	8	-	kHz	Contact SiTime for 16 kHz and other high bandwidth options	
Current Consumption	ldd	-	34	36	mA	No load condition, f = 100 MHz, Vdd = 2.5 V, 2.8 V or 3.3 V	
		-	30	33	mA	No load condition, f = 100 MHz, Vdd = 1.8 V	
Standby Current	I_std	-	-	70	μA	All Vdds, ST = GND, output is Weakly Pulled Down	
Duty Cycle	DC	45	-	55	%	f <= 165 MHz, all Vdds.	
		40	-	60	%	f > 165 MHz, all Vdds.	
Rise/Fall Time	Tr, Tf	-	1.5	2	ns	Vdd = 1.8, 2.5, 2.8 or 3.3 V, 10% - 90% Vdd level	
Output Voltage High	VOH	90%	-	-	Vdd	OH = -7 mA, IOL = 7 mA, (Vdd = 3.3 V)	
Output Voltage Low	VOL	-	-	10%	Vdd	IOH = -4 mA, IOL = 4 mA, (Vdd = 2.8 V and Vdd = 2.5 V) IOH = -2 mA, IOL = 2 mA, (Vdd = 1.8 V)	
Input Pull-up Impedance	Z_in	-	100	250	kΩ	For the OE/ST pin if available	
Start-up Time	T_start	-	6	10	ms		
OE Enable/Disable Time	T_oe	-	-	150	ns	f=100 MHz, all Vdds. For other freq, T_oe = 100 ns + 3 cycles	
Resume Time	T_resume	-	-	10	ms	Measured from the time ST pin crosses 50% threshold	
RMS Period Jitter	T_jitt	-	1.5	2	ps	f = 156.25 MHz, Vdd = 2.5 V, 2.8 V or 3.3 V	
		-	2	3	ps	f = 156.25 MHz, Vdd = 1.8 V	
RMS Phase Jitter (random)	T_phj	-	0.5	1	ps	f = 156.25 MHz, Integration bandwidth=12kHz to 20MHz, All Vdds	
Aging	F_aging	-	-	±5	PPM	10 years	

Notes:

1. Initial tolerance is measure at Vin = Vdd/2

Absolute Pull Range (APR) is defined as the guaranteed pull range over temperature and voltage.
APR = pull range (PR) - frequency stability (F_stab) - Aging (F_aging)
All electrical specifications in the above table are measured with 15pF output load. Contact SiTime for higher drive options.

High Frequency MEMS VCXO

Specifications (Cont.)

Pin Description Tables (4-pin device)

Pin #1 Functionality		
VIN		
0 - Vdd: produces voltage dependent frequency change		

Pin Map				
Pin	Connection			
1	VIN			
2	GND			
3	CLK			
4	Vdd			

Pin Description Tables (6-pin device)

Pin #1 Functionality				
VIN				
0 - Vdd: produces voltage dependent frequency change				
Pin #2 Functionality				
NC				
H or L or Open: No effect on output frequency or other device functions				
OE				
H or Open ^[5] : specified frequency output				
L: output is high impedance				
ST				
H or Open ^[3] : specified frequency output				
L: output is low level (weak pull down). Oscillation stops				

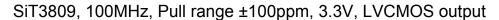
Pin Map				
Pin	Connection			
1	VIN			
2	NC/OE/ST			
3	GND			
4	CLK			
5	NC			
5	NC			
6	Vdd			

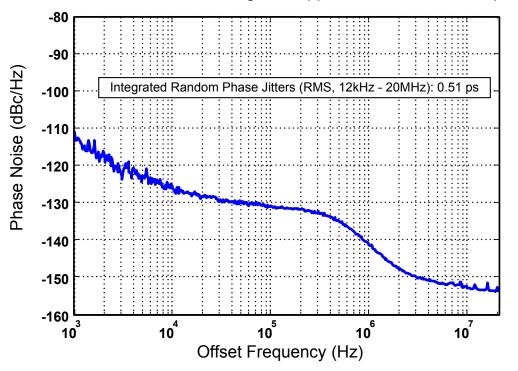
Absolute Maximum Ratings

Attempted operation outside the absolute maximum ratings of the part may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
Vdd	-0.5	4	V
Electrostatic Discharge	-	6000	V
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C
Number of Program Writes	-	1	NA
Program Retention over -40 to 125°C, Process, Vdd (0 to 3.65 V)	1,000+	-	years

Environmental Compliance

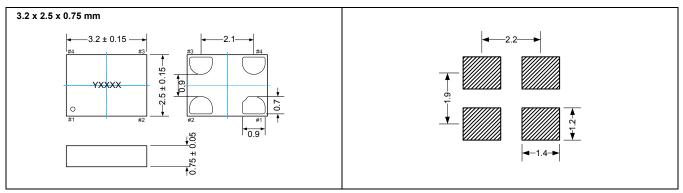

Parameter	Condition/Test Method		
Mechanical Shock	MIL-STD-883F, Method 2002; 50kG		
Mechanical Vibration	MIL-STD-883F, Method 2007; 70G		
Temperature Cycle	JESD22, Method A104		
Solderability	MIL-STD-883F, Method 2003		
Moisture Sensibility Level	MSL1 @ 260°C		


Notes:

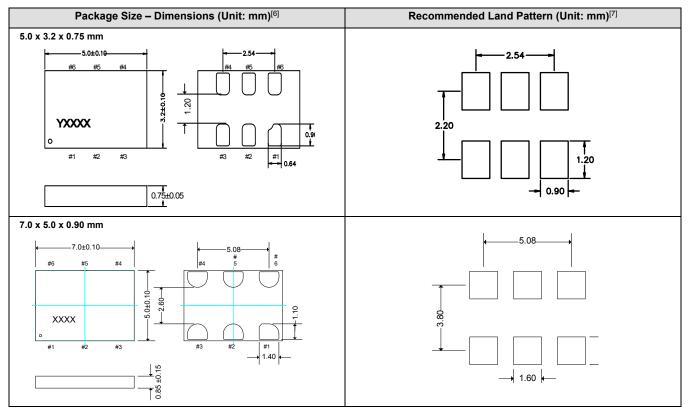
5. A resistor of <100 k Ω between OE/ST pin and VDD is recommended for all voltages.

SiT3809 High Frequency MEMS VCXO Preliminary

Phase Noise Plot



High Frequency MEMS VCXO


Preliminary

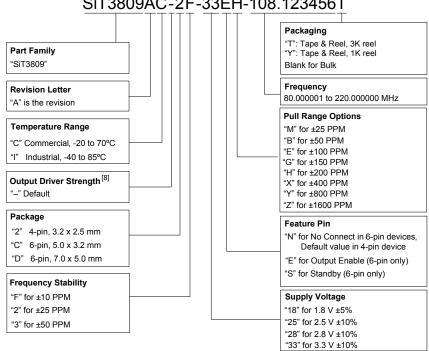
Dimensions and Land Patterns

Packages (4-pin device)

Packages (6-pin device)

Notes:

Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
A capacitor of value 0.1 µF between Vdd and GND is recommended.


Si Time

SiT3809 High Frequency MEMS VCXO

Preliminary

Part No. Guide - How to Order

SiT3809AC-2F-33EH-108.123456T

APR Definition

Absolute pull range (APR) = Norminal pull range (PR) - frequency stability (F_stab) - Aging (F_aging)

APR Table

	Frequency Stability			
Nominal Pull Range	± 10	± 25	±50	
	APR (PPM)			
± 25	± 10	—	—	
± 50	± 35	± 20	—	
± 100	± 85	± 70	± 45	
± 150	± 135	± 120	± 95	
± 200	± 185	± 170	± 145	
± 400	± 385	± 370	± 345	
± 800	± 785	± 770	± 745	
± 1600	± 1585	± 1570	± 1545	

Note:

8. Contact SiTime for different drive strength options for driving higher loads or reducing EMI.

© SiTime Corporation 2012. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any sitime product and any product documentation. product sold by sitme are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. all sales are made conditioned upon compliance with the critical uses policy set forth below.

CRITICAL USE EXCLUSION POLICY

OWNER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.